Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Mem. Inst. Oswaldo Cruz ; 112(7): 504-509, July 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1040572

RESUMO

ABSTRACT Trypanosomatid type I nitroreductases (NTRs), i.e., mitochondrial enzymes that metabolise nitroaromatic pro-drugs, are essential for parasite growth, infection, and survival. Here, a type I NTR of non-virulent protozoan Trypanosoma rangeli is described and compared to those of other trypanosomatids. The NTR gene was isolated from KP1(+) and KP1(-) strains, and its corresponding transcript and 5' untranslated region (5'UTR) were determined. Bioinformatics analyses and nitro-drug activation assays were also performed. The results indicated that the type I NTR gene is present in both KP1(-) and KP1(+) strains, with 98% identity. However, the predicted subcellular localisation of the protein differed among the strains (predicted as mitochondrial in the KP1(+) strain). Comparisons of the domains and 3D structures of the NTRs with those of orthologs demonstrated that the nitroreductase domain of T. rangeli NTR is conserved across all the strains, including the residues involved in the interaction with the FMN cofactor and in the tertiary structure characteristics of this oxidoreductase protein family. mRNA processing and expression were also observed. In addition, T. rangeli was shown to be sensitive to benznidazole and nifurtimox in a concentration-dependent manner. In summary, T. rangeli appears to have a newly discovered functional type I NTR.


Assuntos
Humanos , Nitrorredutases/genética , Trypanosoma rangeli/enzimologia , Variação Genética/genética , Sequência de Bases , DNA de Protozoário/genética , Análise de Sequência de DNA , Trypanosoma rangeli/genética
2.
Mem. Inst. Oswaldo Cruz ; 107(6): 713-719, set. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-649484

RESUMO

Protein tyrosine phosphatases (PTPs) play an essential role in the regulation of cell differentiation in pathogenic trypanosomatids. In this study, we describe a PTP expressed by the non-pathogenic protozoan Trypanosoma rangeli (TrPTP2). The gene for this PTP is orthologous to the T. brucei TbPTP1 and Trypanosoma cruzi (TcPTP2) genes. Cloning and expression of the TrPTP2 and TcPTP2 proteins allowed anti-PTP2 monoclonal antibodies to be generated in BALB/c mice. When expressed by T. rangeli epimastigotes and trypomastigotes, native TrPTP2 is detected as a ~65 kDa protein associated with the parasite's flagellum. Given that the flagellum is an important structure for cell differentiation in trypanosomatids, the presence of a protein responsible for tyrosine dephosphorylation in the T. rangeli flagellum could represent an interesting mechanism of regulation in this structure.


Assuntos
Animais , Camundongos , Anticorpos Monoclonais/imunologia , Flagelos/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Trypanosoma rangeli/enzimologia , Imunização , Camundongos Endogâmicos BALB C , Filogenia , Proteínas Tirosina Fosfatases/genética , Trypanosoma rangeli/genética , Trypanosoma rangeli/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA